Allevi Named Fierce15 Class of 2018!

fierce+biotech+award.jpg

We are so honored to be selected by FierceMedTech as one of their Fierce 15 MedTech Companies of 2018!

What really makes Allevi fierce is our amazing community of users who are using their Allevi bioprinters to revolutionize the way we model disease, test novel drugs, and study the body outside the body.

We're proud to empower Allevi users with the tools that will make tangible impacts on patients' lives. Together, we can change the future of medicine. Thank you, FierceMedTech, for your recognition!

You can read more here.

The Allevi Coaxial Kit

We’re happy to announce the newest addition to our growing library of bioink kits - the Allevi Coxial Kit.

This new bioink kit allows users with an Allevi 2, Allevi 3 or Allevi 6 to mix materials from two syringes during the printing process. This is especially useful when working with materials that require curing catalysts or liquid crosslinking agents (i.e. sodium alginate, calcium chloride, certain silicones, etc).

The ability to mix materials at the nozzle opens up a whole new frontier of materials that you are able to extrude from your Allevi bioprinter. The Coaxial Kit is prepackaged with everything you need to get started out of the box including coaxial tip, tubing, luer lock tip connectors, and custom coaxial gcode.

Our mission here at Allevi is to supply you with best possible bioprinting tools that make it easy to bring your work to life. We are constantly testing new methods, bioinks, and tools in our lab to ensure that we are delivering cutting edge techniques to your bench. Together we are making giant strides in the field of tissue engineering and uncovering new methods that will forever change the way we #buildwithlife. We can’t wait to see what you will build with this one.

Newly Formulated Cell Media Will Change the Way We Study Cancer

cell culture media bioprint bioprinter

The first synthetic cell culture medium was formulated 60 years ago by an American physician named Harry Eagle. As a pathologist, Dr. Eagle needed a way to keep cells alive longer in a laboratory setting in order to study their growth and behavior. His formula, better known at EMEM (Eagle's minimal essential medium), is composed of a mixture of sugars, vitamins, salts, and amino acids and as its name implies, is the bare minimum of nutrients needed in order to keep cells alive ex-vivo.

Since its creation, Eagle’s medium has become an essential consumable in labs worldwide where it is used by researchers to study animal cells. However, the formulation hasn’t changed much since making its debut in 1959 and recently scientists have begun to wonder if feeding cells the bare minimum of nutrients is skewing the results they are obtaining in lab.

Thinking of EMEM as Gatorade (which it essentially is), you can imagine what would happen if you tried to subsist on a diet of Gatorade alone. Your body wouldn’t behave normally under such harsh conditions so why do we expect your cells to be any different?

In 2012, a researcher by the name of Saverio Tardito set out to create a more relevant cell medium.

“The vast majority of biomedical researchers use cell culture media that were not designed to reproduce the physiological cellular environment but were formulated to enable the continued culture of cells with minimal amounts of nutrients and serum”.

Improving the metabolic fidelity of cancer models with a physiological cell culture medium, Science Advances

His final concoction, called Plasmax, is a mixture of approximately 60 nutrients and metabolites found in the human blood. In their paper, published in Science Advances, Tardito and his colleagues at Cancer Research UK Beatson Institute compared Plasmax with traditional cell culture media and found that cells cultured in Plasmax behaved in a more physiological manner.

By studying Plasmax in conjunction with cancer cells, Tardito and his team concluded that their newly formulated medium can improve the degree to which in-vitro models behave as they would in-vivo and ultimately provide better models for cancer research.

As we enter the renaissance of tissue engineering, we are deepening our understanding of the complex organisms that make up the human body. In order to develop novel drugs, better study disease, and regenerate tissue, it is imperative that we develop more relevant models in the lab that mimic the geometry, environment and diet that cells exist on in the body.

Read the full article here.

Bioprinting in the News: 'Bioprinters Are Churning Out Living Fixes to Broken Spines' By WIRED

Image courtesy of www.wired.com

Image courtesy of www.wired.com

Bioprinters are an essential piece of lab equipment for any scientist, researcher, or doctor that wants to study cells in a relevant way. This is because cells in 3D behave differently than their counterparts studied in a 2D environment; they express more accurate biomarkers and perform more physiologically relevant actions. Bioprinters accelerate the pace of research and allow scientists to find innovative solutions to real world problems.

This awesome article by WIRED profiles a team at UC San Diego that has bioprinted a section of spinal cord that can be custom-fit into a patient’s injury.

It’s awesome to see how bioprinting allows researchers to reliably study the body outside the body. Together, we can change the way we study and treat illness!

Read the full article here.

Allevi Author: 3D‐Printed Sugar Stents to Aid in Surgery

Microvascular anastomosis (or the method of surgically connecting blood vessels) is a common part of many reconstructive and transplant surgical procedures.

There are multiple methods for connecting two veins together including coupling devices, surgical glue, and surgical suturing but each method has it’s downsides; coupling devices can face rejection from the body, glue can introduce contamination or clotting to the vein, and suturing (the most commonly accepted practice) is a delicate and time consuming procedure.

 
suturing blood vessels
 

During the suturing procedure, surgeons are in a race against the clock to quickly connect the veins together to ensure that organs continue to receive proper blood flow. However, blood vessels of differing shapes and sizes can sometimes make this procedure difficult to maneuver in a timely fashion.

 
allevi author 3d bioprinted sugar stents to aid in surgical suturing.jpg
 

In their recent paper titled, “3D‐Printed Sugar‐Based Stents Facilitating Vascular Anastomosis”, researchers at Brigham and Women’s Hospital & The University of Nebraska Lincoln collaborated using an Allevi 2 bioprinter to find a solution to aid in the intricacies surrounding this procedure.

Here, dissolvable sugar‐based stents are 3D printed as an assistive tool for facilitating surgical anastomosis. The non-brittle sugar‐based stent holds the vessels together during the procedure and are dissolved upon the restoration of the blood flow. The incorporation of sodium citrate minimizes the chance of thrombosis, and the dissolution rate of the sugar‐based stent can be tailored between 4 and 8 min.

 
allevi 2 3d bioprinter fabricates sugar stents to aid in surgical procedure
 

3D printing is an ideal method for constructing these stents because you are able to quickly design and create custom geometries to fit the patient’s vessels.

The effectiveness of the printed sugar‐based stent was assessed ex vivo and found to be a fast and reliable fabrication method that can be performed in the operating room.

This new method of aiding surgeons is a game-changer as it is dissolvable, tunable, and completely customizable. In the future, your doctor could quickly print out stents to match your exact vein geometry which would reduce the time spent on the operating table and under anesthesia.

Interested in learning more about this novel technique? You can read the full paper here: https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201800702?af=R&