bioengineering

3D Bioprinting Replacement Heart Valves

allevi advanced biomatrix collagen aortic pulmonary heart valve bioprint 3d bioprinted

Throwing it back today to show you this heart valve that was 3d bioprinted using the Allevi 2 with collagen from Advanced BioMatrix.

Your heart has four valves (one for each chamber) that are made up of thin flaps of tissue called cusps. These flaps open and close to allow blood to move through the heart while beating.  The cusps attach to an outer ring of tougher tissue called the annulus. The annulus helps the valve maintain proper shape under the normal strains and stresses of a heartbeat. 

 
heart-valve-labelled-diagram
 

It is essential that your valves open and close tightly to ensure proper blood flow through the heart and onto the rest of your body. A diseased or damaged valve can give you an irregular heartbeat and eventually lead to heart failure. More than 5 million Americans are diagnosed with heart valve disease every year.

 
Heart-Valve-Disease-allevi blog.jpg
 

Many people can live with valve disease and do not require surgery. However, in some cases, the valve needs to be fixed or replaced. Current methods for replacing a damaged valve included plastic parts or animal tissues.

Allevi users are working towards a future where your #doctor is able to 3d bioprint a custom replacement valve from your own heart cells to reduce the rate of failure and rejection. 3D bioprinting is an amazing design tool that allows you to print custom geometries and tune the rheological properties to provide your cells with the support structure they need to do their job. Just another amazing way our users are changing the future of medicine. #buildwithlife #healwithlife

The Allevi Academy

allevi curriculum allevi academy bioprint 3d bioprinter.jpg

By Lauren McLeod, Bioengineer: 

Here at Allevi, we’re always looking to the future - how to prepare for future challenges, how to revolutionize and improve on current research and methodologies...but sometimes it’s necessary to reflect on the past.  We took some time to think about the education experiences that got us to where we are today. Most of us conjured up memories of an impressionable teacher, exciting project, or even an awesome field trip that sparked an excitement for learning and science.  We thought to ourselves, “Why not have bioprinting be the seed of students’ excitement and learning for the field of bioengineering?”

We’re excited to announce the launch of The Allevi Academy- the first step in preparing today’s students for the regenerative medicine challenges of the future!  We partnered with high school teachers, university professors, and educators across the world to produce the best, most streamlined and accessible curriculum possible to arm teachers with the materials and resources needed to introduce their students to bioprinting.  

Through our curriculum, students gain experience with cutting edge biotechnology, putting them light years ahead of their peers as they enter college and the workforce.  According to the US Bureau of Labor Statistics, bioengineers hold the third fastest growing job in the United States, with a projected ten year growth of 61.7% by 2020. Our curriculum gives students a competitive advantage in this burgeoning field.

The curriculum enables students to develop valuable skills across multiple engineering disciplines. Included activities incorporate coding, computer aided design, engineering drawings and 3D fabrication to produce innovative solutions for situations modeled after real life tissue engineering challenges. From designing and prototyping hydrogel wound coverings, to vascularization channels for organ on a chip applications, students learn to problem solve and think critically- skills that span way beyond the field of bioengineering.

       -    All inclusive
       -    Easy to use
       -    Satisfies Next Generation Science 
       -    Satisfies National Science Education Standards
       -    Hands on
       -    Real world applications
       -    Adaptable

Check out The Allevi Academy and learn how you can prepare students for the future of STEM and provide them with the tools they need to tackle the challenges of the future!

Print Alive, Print Allevi

Allevi Author: 3D Bioprinting a Spinal Cord

neuron neuronal allevi 3d bioprinter bioprint.jpg

People often ask us, “what is it that a bioprinter can do really well?”, and we tell them that it’s the ability to print and pattern living cells. Your cells are incredible organisms; they understand the environment around them and communicate with other cells to perform specific organ functions. This is why a bioprinter is such an amazing tool - it empowers you to control the geometry and placement of multiple cell types which allows cells to mimic the environments that they are used to in the body. But some cells are more finicky than others… induced pluripotent stem cells and neural cells for instance are difficult to keep alive and difficult to control.

That’s why this next #AlleviAuthor from University of Minnesota really blew us away with their new paper titled “3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds” and published in Advanced Functional Materials, wherein they used Allevi bioinks to 3D bioprint a spinal cord using induced pluripotent stem cells and oligodendrocyte progenitor cells (OPCs).

Successfully bioprinting multicellular neural tissue is a huge win for the field of regenerative medicine as it would allow damaged tissue to rebuild functional axonal connections across the central nervous system, essentially healing damaged connections. This technique will hopefully help develop new clinical approaches to treat neurological disease, such as spinal cord injury.

You can access the full paper here to learn more.

Allevi Now Available Through VWR

Allevi and VWR logos.png

Here at Allevi, we are constantly working to make our bioprinters and bioinks accessible to scientists worldwide.  Our mission is to get Allevi 3D bioprinters into the best research labs where they can accelerate the pace of discovery and push the boundaries of biology. That's why today we're excited to announce that you can now shop Allevi products on the world's leading life science equipment distributor; VWR International. 

Now it’s easier than ever to get an Allevi bioprinter into your lab and begin changing the world. Join us.

Allevi Author: Plant Based Hydrogels for Cell Laden Bioprinting

plant based hydrogels allevi bioprint.jpg

Time for another inductee to the #AlleviAuthor club. Researchers from University of California, Berkeley and IBM used their Allevi 2 bioprinter to study the printability and viability of plant based bioinks.

In their paper titled, “Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering” and published in ACS Biomaterials Science & Engineering, they compared agarose-based hydrogels commonly used for cartilage tissue engineering to Pluronic. The goal is to find a bioink that has great printability without sacrificing cell viability.

The team compared mechanical and rheological properties, including yield stress, storage modulus, and shear thinning, as well as construct shape fidelity to assess their potential as a bioink for cell-based tissue engineering. Read on to find out which ratios of alginate and agarose demonstrated the best cell viability as well as print structure for their cartilage tissue engineering needs: https://cdn-pubs.acs.org/doi/10.1021/acsbiomaterials.8b00903.