biofabrication

Allevi Author: NJIT Bioprints Vascularized Tissue

NJIT allevi guvendiren vascular vasculature vein 3d bioprint bioprinted bioprinter

We are VERY excited to announce the latest addition the Allevi Author Club; the Guvendiren Lab from the New Jersey Institute of Technology.

Dr. Guvendiren’s lab focuses on creating novel bioinks for tissue engineering and regenerative medicine applications with a focus on 3D bioprinting. Their most recent paper, published in Acta Biomaterialia and titled “3D bioprinting of complex channels within cell-laden hydrogels”, explores their new approach to 3D bioprinting vasculature into 3D tissue.

There are many different methods for creating microchannels within constructs, including electrospinning, fiber bonding, and casting solvents into molds. However these techniques don’t allow for precise control of channel size, shape or location. They can also be time-consuming and restrictive in the number of cell lines that you are able to work with simultaneously.

The Guvendiren lab is exploring a new approach to creating these channel-laden tissues using their Allevi 2 bioprinter. In their paper, they explore a method of 3D bioprinting sacrificial bioinks into cell-laden hydrogels (pluronic into methacrylated alginate/methacrylated hyaluronic acid to be specific). This technique allows them to create custom channel geometries, control channel thickness and tune the hydrogel rigidity. They also explored a super cool technique wherein they alter the printhead speed in order to create channels of differing diameters.

Their images from confocal scanning show strong endothelial cell (HUVEC) attachment to the channel walls and depict the final 3D bioprinted vein construct.

HUVEC vascular channel vein 3d bioprinted bioprint allevi NJIT guvendiren

This research explores important techniques for creating tunable microchannels within 3D tissues. We can imagine a future wherein these methods are used to create 3D bioprinted organs with custom and complex vascular networks. It could also be used to create custom 3D models to study disease progression and test drug efficacy and toxicity. Amazing work, Guvendiren Lab!!

Click through to read their material characterization and learn more about their bioprinting approach: https://www.sciencedirect.com/science/article/pii/S1742706119301515.

Allevi Author: 3D Bioprinting a Spinal Cord

neuron neuronal allevi 3d bioprinter bioprint.jpg

People often ask us, “what is it that a bioprinter can do really well?”, and we tell them that it’s the ability to print and pattern living cells. Your cells are incredible organisms; they understand the environment around them and communicate with other cells to perform specific organ functions. This is why a bioprinter is such an amazing tool - it empowers you to control the geometry and placement of multiple cell types which allows cells to mimic the environments that they are used to in the body. But some cells are more finicky than others… induced pluripotent stem cells and neural cells for instance are difficult to keep alive and difficult to control.

That’s why this next #AlleviAuthor from University of Minnesota really blew us away with their new paper titled “3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds” and published in Advanced Functional Materials, wherein they used Allevi bioinks to 3D bioprint a spinal cord using induced pluripotent stem cells and oligodendrocyte progenitor cells (OPCs).

Successfully bioprinting multicellular neural tissue is a huge win for the field of regenerative medicine as it would allow damaged tissue to rebuild functional axonal connections across the central nervous system, essentially healing damaged connections. This technique will hopefully help develop new clinical approaches to treat neurological disease, such as spinal cord injury.

You can access the full paper here to learn more.

Allevi Author: Plant Based Hydrogels for Cell Laden Bioprinting

plant based hydrogels allevi bioprint.jpg

Time for another inductee to the #AlleviAuthor club. Researchers from University of California, Berkeley and IBM used their Allevi 2 bioprinter to study the printability and viability of plant based bioinks.

In their paper titled, “Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering” and published in ACS Biomaterials Science & Engineering, they compared agarose-based hydrogels commonly used for cartilage tissue engineering to Pluronic. The goal is to find a bioink that has great printability without sacrificing cell viability.

The team compared mechanical and rheological properties, including yield stress, storage modulus, and shear thinning, as well as construct shape fidelity to assess their potential as a bioink for cell-based tissue engineering. Read on to find out which ratios of alginate and agarose demonstrated the best cell viability as well as print structure for their cartilage tissue engineering needs: https://cdn-pubs.acs.org/doi/10.1021/acsbiomaterials.8b00903.

Meet Allevi 3: The bioprinter for every application.

Allevi 3 bioprinter triple extruder bioprinter

Have you noticed? Exciting things are happening in the fields of tissue engineering and regenerative medicine. Since our humble beginnings, the Allevi community has grown to labs in all corners of the globe and includes the world’s best scientists and pharmaceutical innovators. And your work is having an impact.

With every new #AlleviAuthor paper that gets published, our incredible community wows us with yet another mind-blowing application. Whether you are creating personalized bone grafts, printing tumor models for better drug testing, or studying the dynamics of the vasculature system - we provided you a tool and you have amazed us with what you have accomplished with it.

Today, we’re excited to announce the newest addition to the Allevi family of 3D bioprinters that was inspired by your work - the Allevi 3. The Allevi 3 is easy to use, extremely versatile, and yet still incredibly powerful. Check out the bioprinter that can bring your work to life. What will you build?

The Challenges and Advances of Imitating Nature

Allevi Advanced Biomatrix additives bioink additives for 3d bioprinting tissue and organs on 3d bioprinter

One of the largest hurdles of in vitro cell culture has been to mimic conditions that closely resemble in vivo outcomes. Significant strides have been made to this end in the past decades with progress accelerating in more recent years.

One approach that has widely-contributed to progress in tissue engineering and regenerative medicine has been to imitate the human body as accurately as possible. Tissues and organs consist of a milieu of extracellular matrices with varying quantities and placements.

With the advances in 3D bioprinting, scientists now have another tool to move closer to engineering tissues and organs that are more in vivo-like. Employing 3D bioprinting, a variety of ECMs can be precisely deposited in more native formats. 3D bioprinters now have multiple dispensing heads that can simultaneously lay down the ECM with cells in tissue and organ-like configurations. Furthermore, discoveries have recently been made creating native bioinks that are compatible with 3D bioprinters. A combination of such advances and discoveries with 3D bioprinters and native ECM bioinks likely propel future advancements in tissue and organ fabrication.

Further, native collagen bioinks consisting of Type I collagen can also be blended with other ECM’s to formulate more in vivo-like bioinks. Some of these ECMs include Type I, II, III, IV, V collagens, hyaluronic acid, elastin (tropoelastin), fibronectin and vitronectin. ECMs play a major role in achieving the proper cell behavior, cell adhesion signals and binding sites.

In addition to formulating a more optimal ECM environment, cells can be pre-mixed with the bioinks and bioprinted. The cells, in many cases, have been shown to remodel the tissue. Cells secrete and deposit their own intrinsic ECMs, growth factors, cytokines and other biologically relevant components.

The combination of these advanced 3D bioprinters, and cell-laden yet native-to-the-body bioinks, greatly enhance the capabilities and tools available to tissue engineers and scientists.

Allevi is excited to begin offering a broad line of native extracellular matrix proteins from Advanced BioMatrix (ABM) to serve as additives to many of Allevi’s BioInks. Bowman Bagley, Director of Business Development at ABM, comments: “The bar is being raised each day as new publications come out. Researchers are beginning to reject non-native materials as new native, yet printable, bioinks have emerged and are commercially available. The quest to bioprint tissues and organs begins with bioinks composed of native proteins that best replicate a natural, in vivo-like cellular environment. Our goal is to provide all of the proteins that help best replicate the human body when bioprinting. To print native tissues, we need native bioinks.”

As we continue to try and control tissue design, Allevi continues to provide the tools that will allow scientist to most accurately represent human architecture.