bioprinting

Allevi Author - Valentine's Day Edition: GWU Bioprints Heart Tissue

cardiac muscle myocytes fibroblasts george washington university allevi 3d bioprinters and bionk

George Washington University joins the #AlleviAuthor club with their new paper titled, “Use of GelMA for 3D printing of cardiac myocytes and fibroblasts” and published in Journal of 3D Printing in Medicine.

First let’s review some basics about your heart! Heart tissue is composed of two main cell types; cardiac fibroblasts (CFB) & cardiomyocytes (CMC).

 
cardiac+myocytes+and+fibroblasts+allevi+GWU.jpg
 

Cardiomyocytes are the contracting cells which allow the heart to pump. Each cardiomyocyte needs to contract in coordination with its neighboring cells to efficiently pump blood from the heart, and if this coordination breaks down then the heart may not pump at all.

Fibroblast cells give support to the muscle tissue. They are unable to provide forceful contractions like cardiomyocytes, but instead are largely responsible for creating and maintaining the extracellular matrix which forms the mortar in which cardiomyocyte bricks are embedded. Fibroblasts also play a crucial role in responding to injury by creating collagen while gently contracting to pull the edges of the injured area together.

In previous academic studies, tests of pure populations of cardiomyoctes have failed to stay viable making it difficult to study the heart in a lab setting. In their recent paper, the team at George Washington University set out to determine how 3D bioprinting affects these two types of cells and if there is a way to create viable 3D tissue in the lab by bioprinting both CMCs and CFBs in tandem.

The team studied the effects of temperature, pressure, bioink composition, and UV exposure to determine the best conditions for 3D bioprinting heart muscle.

Through LIVE/DEAD assays, bioluminescence imaging and morphological assessment, they determined that cell survival within a 3D bioprinted CMC-laden GelMA construct was MORE sensitive to extruder pressure and bioink composition than the fibroblast-laden constructs. Also they determined that BOTH cell types were adversely impacted by the UV curing step. And finally they determined that using a mixture of cardiomyocytess and cardiac fibroblasts increased viability of the tissue- showing that CMCs <3 CFBs.

Cheers to the team at GWU! Their research creates an important foundation for future studies of 3D bioprinted heart tissue.

Read their paper here.

The Allevi Coaxial Kit

We’re happy to announce the newest addition to our growing library of bioink kits - the Allevi Coxial Kit.

This new bioink kit allows users with an Allevi 2, Allevi 3 or Allevi 6 to mix materials from two syringes during the printing process. This is especially useful when working with materials that require curing catalysts or liquid crosslinking agents (i.e. sodium alginate, calcium chloride, certain silicones, etc).

The ability to mix materials at the nozzle opens up a whole new frontier of materials that you are able to extrude from your Allevi bioprinter. The Coaxial Kit is prepackaged with everything you need to get started out of the box including coaxial tip, tubing, luer lock tip connectors, and custom coaxial gcode.

Our mission here at Allevi is to supply you with best possible bioprinting tools that make it easy to bring your work to life. We are constantly testing new methods, bioinks, and tools in our lab to ensure that we are delivering cutting edge techniques to your bench. Together we are making giant strides in the field of tissue engineering and uncovering new methods that will forever change the way we #buildwithlife. We can’t wait to see what you will build with this one.

Bioprinting in the News: 'Bioprinters Are Churning Out Living Fixes to Broken Spines' By WIRED

Image courtesy of www.wired.com

Image courtesy of www.wired.com

Bioprinters are an essential piece of lab equipment for any scientist, researcher, or doctor that wants to study cells in a relevant way. This is because cells in 3D behave differently than their counterparts studied in a 2D environment; they express more accurate biomarkers and perform more physiologically relevant actions. Bioprinters accelerate the pace of research and allow scientists to find innovative solutions to real world problems.

This awesome article by WIRED profiles a team at UC San Diego that has bioprinted a section of spinal cord that can be custom-fit into a patient’s injury.

It’s awesome to see how bioprinting allows researchers to reliably study the body outside the body. Together, we can change the way we study and treat illness!

Read the full article here.

The Allevi Academy

allevi curriculum allevi academy bioprint 3d bioprinter.jpg

By Lauren McLeod, Bioengineer: 

Here at Allevi, we’re always looking to the future - how to prepare for future challenges, how to revolutionize and improve on current research and methodologies...but sometimes it’s necessary to reflect on the past.  We took some time to think about the education experiences that got us to where we are today. Most of us conjured up memories of an impressionable teacher, exciting project, or even an awesome field trip that sparked an excitement for learning and science.  We thought to ourselves, “Why not have bioprinting be the seed of students’ excitement and learning for the field of bioengineering?”

We’re excited to announce the launch of The Allevi Academy- the first step in preparing today’s students for the regenerative medicine challenges of the future!  We partnered with high school teachers, university professors, and educators across the world to produce the best, most streamlined and accessible curriculum possible to arm teachers with the materials and resources needed to introduce their students to bioprinting.  

Through our curriculum, students gain experience with cutting edge biotechnology, putting them light years ahead of their peers as they enter college and the workforce.  According to the US Bureau of Labor Statistics, bioengineers hold the third fastest growing job in the United States, with a projected ten year growth of 61.7% by 2020. Our curriculum gives students a competitive advantage in this burgeoning field.

The curriculum enables students to develop valuable skills across multiple engineering disciplines. Included activities incorporate coding, computer aided design, engineering drawings and 3D fabrication to produce innovative solutions for situations modeled after real life tissue engineering challenges. From designing and prototyping hydrogel wound coverings, to vascularization channels for organ on a chip applications, students learn to problem solve and think critically- skills that span way beyond the field of bioengineering.

       -    All inclusive
       -    Easy to use
       -    Satisfies Next Generation Science 
       -    Satisfies National Science Education Standards
       -    Hands on
       -    Real world applications
       -    Adaptable

Check out The Allevi Academy and learn how you can prepare students for the future of STEM and provide them with the tools they need to tackle the challenges of the future!

Print Alive, Print Allevi

Allevi Author: 3D Bioprinting a Spinal Cord

neuron neuronal allevi 3d bioprinter bioprint.jpg

People often ask us, “what is it that a bioprinter can do really well?”, and we tell them that it’s the ability to print and pattern living cells. Your cells are incredible organisms; they understand the environment around them and communicate with other cells to perform specific organ functions. This is why a bioprinter is such an amazing tool - it empowers you to control the geometry and placement of multiple cell types which allows cells to mimic the environments that they are used to in the body. But some cells are more finicky than others… induced pluripotent stem cells and neural cells for instance are difficult to keep alive and difficult to control.

That’s why this next #AlleviAuthor from University of Minnesota really blew us away with their new paper titled “3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds” and published in Advanced Functional Materials, wherein they used Allevi bioinks to 3D bioprint a spinal cord using induced pluripotent stem cells and oligodendrocyte progenitor cells (OPCs).

Successfully bioprinting multicellular neural tissue is a huge win for the field of regenerative medicine as it would allow damaged tissue to rebuild functional axonal connections across the central nervous system, essentially healing damaged connections. This technique will hopefully help develop new clinical approaches to treat neurological disease, such as spinal cord injury.

You can access the full paper here to learn more.