hydrogels

Allevi Author - Valentine's Day Edition: GWU Bioprints Heart Tissue

cardiac muscle myocytes fibroblasts george washington university allevi 3d bioprinters and bionk

George Washington University joins the #AlleviAuthor club with their new paper titled, “Use of GelMA for 3D printing of cardiac myocytes and fibroblasts” and published in Journal of 3D Printing in Medicine.

First let’s review some basics about your heart! Heart tissue is composed of two main cell types; cardiac fibroblasts (CFB) & cardiomyocytes (CMC).

 
cardiac+myocytes+and+fibroblasts+allevi+GWU.jpg
 

Cardiomyocytes are the contracting cells which allow the heart to pump. Each cardiomyocyte needs to contract in coordination with its neighboring cells to efficiently pump blood from the heart, and if this coordination breaks down then the heart may not pump at all.

Fibroblast cells give support to the muscle tissue. They are unable to provide forceful contractions like cardiomyocytes, but instead are largely responsible for creating and maintaining the extracellular matrix which forms the mortar in which cardiomyocyte bricks are embedded. Fibroblasts also play a crucial role in responding to injury by creating collagen while gently contracting to pull the edges of the injured area together.

In previous academic studies, tests of pure populations of cardiomyoctes have failed to stay viable making it difficult to study the heart in a lab setting. In their recent paper, the team at George Washington University set out to determine how 3D bioprinting affects these two types of cells and if there is a way to create viable 3D tissue in the lab by bioprinting both CMCs and CFBs in tandem.

The team studied the effects of temperature, pressure, bioink composition, and UV exposure to determine the best conditions for 3D bioprinting heart muscle.

Through LIVE/DEAD assays, bioluminescence imaging and morphological assessment, they determined that cell survival within a 3D bioprinted CMC-laden GelMA construct was MORE sensitive to extruder pressure and bioink composition than the fibroblast-laden constructs. Also they determined that BOTH cell types were adversely impacted by the UV curing step. And finally they determined that using a mixture of cardiomyocytess and cardiac fibroblasts increased viability of the tissue- showing that CMCs <3 CFBs.

Cheers to the team at GWU! Their research creates an important foundation for future studies of 3D bioprinted heart tissue.

Read their paper here.

Our New Sterile GelMA is Awesome!

Allevi GelMA gelatin methacrylate sterile solution easy to use.JPG

Gelatin Methacrylate (GelMA) is a popular material in bioprinting due to its mechanical properties and printability. However, the process of methacrylating gelatin and sterile filtering it is time-consuming, cumbersome, and inefficient.

We know how annoying it can be! So after months of testing - we're excited to release our new pre-sterilized and pre-loaded GelMA that is ready to be mixed with your cell suspensions and photo-initiators.

No more filtering. No more lost product. No more measuring. Just add your cells and start printing!

We want you to be the first to give it a try!

Allevi Author: Plant Based Hydrogels for Cell Laden Bioprinting

plant based hydrogels allevi bioprint.jpg

Time for another inductee to the #AlleviAuthor club. Researchers from University of California, Berkeley and IBM used their Allevi 2 bioprinter to study the printability and viability of plant based bioinks.

In their paper titled, “Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering” and published in ACS Biomaterials Science & Engineering, they compared agarose-based hydrogels commonly used for cartilage tissue engineering to Pluronic. The goal is to find a bioink that has great printability without sacrificing cell viability.

The team compared mechanical and rheological properties, including yield stress, storage modulus, and shear thinning, as well as construct shape fidelity to assess their potential as a bioink for cell-based tissue engineering. Read on to find out which ratios of alginate and agarose demonstrated the best cell viability as well as print structure for their cartilage tissue engineering needs: https://cdn-pubs.acs.org/doi/10.1021/acsbiomaterials.8b00903.

Meet Allevi 3: The bioprinter for every application.

Allevi 3 bioprinter triple extruder bioprinter

Have you noticed? Exciting things are happening in the fields of tissue engineering and regenerative medicine. Since our humble beginnings, the Allevi community has grown to labs in all corners of the globe and includes the world’s best scientists and pharmaceutical innovators. And your work is having an impact.

With every new #AlleviAuthor paper that gets published, our incredible community wows us with yet another mind-blowing application. Whether you are creating personalized bone grafts, printing tumor models for better drug testing, or studying the dynamics of the vasculature system - we provided you a tool and you have amazed us with what you have accomplished with it.

Today, we’re excited to announce the newest addition to the Allevi family of 3D bioprinters that was inspired by your work - the Allevi 3. The Allevi 3 is easy to use, extremely versatile, and yet still incredibly powerful. Check out the bioprinter that can bring your work to life. What will you build?

Allevi Author: Nathan from Drexel Univ First-authors this study of hydrogels

nathan tessema ersumo drexel University spiller lab allevi

Onto a very special #AlleviAuthor - our user Nathan Tessema Ersumo was an undergrad from Dr. Kara Spiller's Lab at Drexel University when he FIRST authored this beauty.

Nathan used the Allevi BetaBot to study the mechanical properties of different hydrogels for applications within tissue engineering.  There are still many unknowns about the mechanical properties of biomaterials before and after printing. Nathan's paper studies the the differences in the Young's moduli between bioprinted and molded constructs. 

We're especially proud of this work because it highlights a core aspect of our mission here at Allevi; accessibility. We design our platforms to be accessible and affordable to everyone in the lab. That versatility and ease of use makes it possible to make novel discoveries like this one and to #buildwithlife (even during the undergrad years). 

You can download and read the publication here.