organs

BBC's The One Show Visits Allevi Power User, Dr Sam Pashneh-Tala

BBC's The One Show recently stopped by Dr. Sam Pashneh-Tala's lab at the University of Sheffield to learn more about tissue engineering and 3D bioprinting.

Dr. Pashneh-Tala’s research is focused on developing novel tissue-engineered blood vessels for use in vascular surgery. Current strategies rely on autograft vessels; which are of limited availability, variable quality and are prone to infection and blood clotting. Using tissue engineering and 3d biofabrication techniques, Dr. Pashneh-Tala is developing methods to allow blood vessels of custom geometries to be produced.

Check out the video below to learn more about the amazing research that is being performed today in his lab and the future of 3d bioprinting:

Dr. Pashneh Tala's research is bringing the future of 3d bioprinted tissues and organs that much closer. We can't wait to see what he will do next.  

New Product Alert: Organ-on-a-Chip Kit

allevi organ on a chip organ-on-a-chip microfluidics PDMS carbohydrate glass volumetric inc vasculature

Organ-on-a-chip technology, developed by the Wyss Institute at Harvard, has had a revolutionary impact on the field of tissue engineering by allowing the creation of models that mimic organ function and model diseases in a device that fits in the palm of your hand.

We were amazed in 2012 when we read Dr. Dongeun Huh and Dr. Donald Ingber's paper in Science Translational Medicine that successfully created a diseased lung-on-a-chip. Their findings demonstrated the ability to identify a drug's life-threatening toxicity that went unnoticed through traditional experimental methods, such as animal testing models. It was a milestone achievement and it inspired us to learn more about tissue engineering and its possible impact on humanity.

Since then, however, organ-on-a-chip manufacturing has mostly remained unchanged. Conventional methods give you little freedom to easily customize and create inner-chip architectures for your experimental models. We think it's time for a change...

Today, we're excited to offer Carbohydrate Glass from Volumetric™ Inc. and published in Nature Materials in our new 3D Organ-on-a-Chip Kit. Carbohydrate Glass is an incredible sacrificial material that has excellent printability and makes high-resolution microchannels. This new bioink kit will provide you the ability to create custom 3D geometries within organ-on-a-chip devices and allow for design freedom to create custom in vitro organ systems that were previously not possible. 

Our mission here at Allevi is to get technologies like this one into the hands of researchers who can really make a difference. We have worked closely with Dr. Jordan Miller, co-founder of Volumetric Inc, to perfect the protocol for the Allevi platform. We believe that custom organ-on-a-chip designs will be a major area of innovation for the tissue engineering and pharmaceutical community. This new kit provides another unique high impact application for biofabrication to not only change the field today, but the healthcare industry tomorrow. We can't wait to see what you will do with it.

On the Horizon: The First 3D Bioprinted Organ Transplant

3D bioprinters are steadily becoming a staple in research and health settings around the world—and Russian researchers from the 3D Bioprinting Solutions lab just outside Moscow are proving just how powerful they can be.

Their aim is to perform the first transplant of a 3D bioprinted organ. The organ of choice? A thyroid gland, due to its relative simplicity. If the operation succeeds and the thyroid is accepted by the patient’s body, the lab will work on transplanting a 3D bioprinted kidney in the coming years.

3d bioprinted organ transplant.jpg

The thyroid will be printed using fat-derived stem cells, and a hydrogel. Since the patient’s own stem cells will be used, the hope is that the resulting thyroid gland will not be rejected by their body.

Head of research at the lab, Vladimir Mironov, is excited by the prospect of applying this technology to kidneys: “The one who will be the first to print and then successfully transplant the kidney to the patient - who will stay alive - will for sure get a Nobel prize.”

The whole 3D bioprinting community, including us here at Allevi, has high hopes for the operation. It’s success could be a huge watershed moment in medical history. 

10 Cools Things You Could Print with a 3D Bioprinter in the Near Future

3D bioprinting is an intuitive way to approach biology. But not many people realize its versatility. To give an idea of what is possible through 3D bioprinting, we’re starting a little series called “Allevi Applications.” Hopefully, this will make the idea of bioprinting a little more accessible! So without further ado, let’s get started.

1. Joint replacements, think knee, ankle and elbow.

1. knee replacement.jpg

2. Microfluidic chips

2. microfluidics.jpg

3. Cell scaffolds for replacement organs, eventually making fulling functioning organs

3. cell scaffolds for replacement parts.jpg

4. Cartilage

4. cartilage.jpg

5. Accurate surgical models for physicians to practice difficult procedures

5. surgical models.jpg

6. Drugs with custom release rates, compositions and geometries

6. drugs.jpg

7. Teeth and dental implants

8. Skin grafts for burn victims

9. Casts and bioactive clothing

9. casts and bones.jpg

10.  Blood vessels, arteries and heart valves

And our users are just getting started. Check back as we cover new publications from #Allevi Authors and see what amazing applications they come up with next.