Introducing: The Allevi Tissue Layering Bioink Kit


Your cells are smart. They know the forces around them, what materials they are in, and can even sense the smallest details in a bioink. Have you ever wondered how pure your bioinks are? Do they contain any thickening agents that can negatively affect tissue viability and function? It’s worth a look at the data sheet the next time you consider using a new bioink in lab.

Here at Allevi, we take great strides to source the purest bioinks that are most commonly found in our bodies. The collagens we choose provide unparalleled results that biologists and bioengineers love. There is a challenge in doing this though; pure collagen has historically been a very difficult bioink to work with because it is difficult to pattern. Low concentrations of collagen (like the concentration found in your body) have a very low viscosity, making it hard to control the geometry of the tissue and hindering cell directed proliferation.

We have been working in our lab for over a year trying to crack the code on low concentration collagen bioprinting. So much amazing research has already been conducted with collagen that we wanted to make it easy for you to bring that research to the next level with 3D bioprinting.

We’re proud to announce that we have finally achieved the ability to pattern pure collagen in an automated fashion. With our proprietary CORE™ printhead and our new Tissue Layering Kit, you are now able to print and pattern 3 mg/mL type I collagen or 8 mg/mL type I methacrylated collagen. This is the first time that such low concentrations of pure collagen can be printed, patterned, and layered through 3D bioprinting. We can’t wait to see what you will do with this one!

Bioprinted_Patterned Skin Kit Microbeads.png

Announcing Our Newest Bioink Kit - The Allevi Vascularization Kit

allevi 3d bioprinter bioprint bioprinted vascular network vascularization

One of the challenges within tissue engineering is creating thick tissues. Why is that? To date it has been challenging to add vascularization to 3D printed tissues. 

Vascularization is our body's highway system. Networks of veins reach each cell to deliver fresh oxygen and nutrients, and remove waste and carbon dioxide. This vascular network is essential for organ function.

The challenge within tissue engineering has been to replicate these networks, but even more so… to design them. We have been limited in our bioprinted tissue's thickness because it has been difficult to create these highways in the lab. ....Until now.

allevi vascularization bioink kit bioprint bioprinter bioprinted veins

We are excited to launch the Allevi Vascularization Kit that empowers you to replicate some of the most complex vascular trees in an easy way. It enables you to create cm thick tissues in an automated, standardized fashion and allows your thick tissues to live for weeks.

Vascularization is foundational to begin studying, and replicating the body outside the body in a more accurate way. We are excited to provide you with a cornerstone application within the Allevi platform to help you find solutions to humanity's most difficult problems.

BBC's The One Show Visits Allevi Power User, Dr Sam Pashneh-Tala

BBC's The One Show recently stopped by Dr. Sam Pashneh-Tala's lab at the University of Sheffield to learn more about tissue engineering and 3D bioprinting.

Dr. Pashneh-Tala’s research is focused on developing novel tissue-engineered blood vessels for use in vascular surgery. Current strategies rely on autograft vessels; which are of limited availability, variable quality and are prone to infection and blood clotting. Using tissue engineering and 3d biofabrication techniques, Dr. Pashneh-Tala is developing methods to allow blood vessels of custom geometries to be produced.

Check out the video below to learn more about the amazing research that is being performed today in his lab and the future of 3d bioprinting:

Dr. Pashneh Tala's research is bringing the future of 3d bioprinted tissues and organs that much closer. We can't wait to see what he will do next.  

Introducing the Conductive Tissue Kit - It's Electric!


Our bodies contain a highway of integrated electrical communication called the nervous system. It helps regulate our movements, emotions, and even thoughts by having electricity chemically run across conductive tissue. That is why conductivity is a key ingredient to include when thinking about engineering tissues.

Today, we announced the availability of Dimension Inx LLC’s advanced material – 3D Graphene 3D-Paint. This novel material will provide users the ability to integrate conductivity into electroactive tissues, such as heart, muscle, and nerve in the lab. Research grade 3D Graphene, previously featured in and on the cover of the journal  ACS Nano, is now further accessible through our easy to use Conductive Tissue Kit.

One of the most challenging aspects for tissue engineers today is to be able to introduce electrical conductivity, an important and increasingly recognized biomaterial characteristic, into tissue systems. This is particularly useful for electroactive tissues such as skeletal and cardiac muscle, as well as peripheral and central nerve, which greatly benefit from electrical stimulus and/or grow based in part on the electrical conductivity of the material in their immediate vicinity.

With the Conductive Tissue Kit, researchers can begin to further explore the electroactive response of a variety of cells, tissues, and organs - leveraging the electrical conductivity of the 3D-Graphene to not only study basic biology, but to create tissue engineering and bioelectronic constructs. As-printed, 3D-Graphene is composed of approximately 60 vol.% graphene and 40 vol.% high quality PLGA polymer. Unlike other 3D-printable graphene composities on the market, 3D-Graphene is more graphene than polymer. Despite being mostly graphene, 3D-printed 3D-Graphene is flexible and has thus far exhibited excellent in vitro and in vivo results in academic studies.

There is no other material in the industry today that meets the needs that 3D-Graphene came to meet. While it is conductive, it also is cytocompatibile and integrates very nicely with living tissue, making it a versatile material useful for cardiac, nervous and skeletal muscle tissue, as well as circuits that could be implanted in the future. The kit brings all the components necessary to print and test the material.

Allevi continues to set the standard and provide the necessary foundational components for the tissue engineering and biofabrication industry. There is no question electrical conductivity is one of them. We are happy to continue to provide Dimension Inx's new 3D-Paints and advanced biomaterials to make well on our promise to the industry.”

Nearly all tissues operate via electrical signaling to some degree; but the biggest one, in addition to both peripheral and central nerves, is muscle (including cardiac muscle). Electrical conductivity as a biomaterial property is highly desirable and necessary in tissue engineering…. The problem is that traditional electrically conductive materials, like metals, do not integrate well with soft tissues in the body. 3D-Graphene is different.

10 Cools Things You Could Print with a 3D Bioprinter in the Near Future

3D bioprinting is an intuitive way to approach biology. But not many people realize its versatility. To give an idea of what is possible through 3D bioprinting, we’re starting a little series called “Allevi Applications.” Hopefully, this will make the idea of bioprinting a little more accessible! So without further ado, let’s get started.

1. Joint replacements, think knee, ankle and elbow.

1. knee replacement.jpg

2. Microfluidic chips

2. microfluidics.jpg

3. Cell scaffolds for replacement organs, eventually making fulling functioning organs

3. cell scaffolds for replacement parts.jpg

4. Cartilage

4. cartilage.jpg

5. Accurate surgical models for physicians to practice difficult procedures

5. surgical models.jpg

6. Drugs with custom release rates, compositions and geometries

6. drugs.jpg

7. Teeth and dental implants

8. Skin grafts for burn victims

9. Casts and bioactive clothing

9. casts and bones.jpg

10.  Blood vessels, arteries and heart valves

And our users are just getting started. Check back as we cover new publications from #Allevi Authors and see what amazing applications they come up with next.