Allevi Applications

The Allevi Coaxial Kit

We’re happy to announce the newest addition to our growing library of bioink kits - the Allevi Coxial Kit.

This new bioink kit allows users with an Allevi 2, Allevi 3 or Allevi 6 to mix materials from two syringes during the printing process. This is especially useful when working with materials that require curing catalysts or liquid crosslinking agents (i.e. sodium alginate, calcium chloride, certain silicones, etc).

The ability to mix materials at the nozzle opens up a whole new frontier of materials that you are able to extrude from your Allevi bioprinter. The Coaxial Kit is prepackaged with everything you need to get started out of the box including coaxial tip, tubing, luer lock tip connectors, and custom coaxial gcode.

Our mission here at Allevi is to supply you with best possible bioprinting tools that make it easy to bring your work to life. We are constantly testing new methods, bioinks, and tools in our lab to ensure that we are delivering cutting edge techniques to your bench. Together we are making giant strides in the field of tissue engineering and uncovering new methods that will forever change the way we #buildwithlife. We can’t wait to see what you will build with this one.

The Allevi Academy

allevi curriculum allevi academy bioprint 3d bioprinter.jpg

By Lauren McLeod, Bioengineer: 

Here at Allevi, we’re always looking to the future - how to prepare for future challenges, how to revolutionize and improve on current research and methodologies...but sometimes it’s necessary to reflect on the past.  We took some time to think about the education experiences that got us to where we are today. Most of us conjured up memories of an impressionable teacher, exciting project, or even an awesome field trip that sparked an excitement for learning and science.  We thought to ourselves, “Why not have bioprinting be the seed of students’ excitement and learning for the field of bioengineering?”

We’re excited to announce the launch of The Allevi Academy- the first step in preparing today’s students for the regenerative medicine challenges of the future!  We partnered with high school teachers, university professors, and educators across the world to produce the best, most streamlined and accessible curriculum possible to arm teachers with the materials and resources needed to introduce their students to bioprinting.  

Through our curriculum, students gain experience with cutting edge biotechnology, putting them light years ahead of their peers as they enter college and the workforce.  According to the US Bureau of Labor Statistics, bioengineers hold the third fastest growing job in the United States, with a projected ten year growth of 61.7% by 2020. Our curriculum gives students a competitive advantage in this burgeoning field.

The curriculum enables students to develop valuable skills across multiple engineering disciplines. Included activities incorporate coding, computer aided design, engineering drawings and 3D fabrication to produce innovative solutions for situations modeled after real life tissue engineering challenges. From designing and prototyping hydrogel wound coverings, to vascularization channels for organ on a chip applications, students learn to problem solve and think critically- skills that span way beyond the field of bioengineering.

       -    All inclusive
       -    Easy to use
       -    Satisfies Next Generation Science 
       -    Satisfies National Science Education Standards
       -    Hands on
       -    Real world applications
       -    Adaptable

Check out The Allevi Academy and learn how you can prepare students for the future of STEM and provide them with the tools they need to tackle the challenges of the future!

Print Alive, Print Allevi

Cosmetic Animal Testing is on its Way Out

allevi ban cosmetic animal testing 3d bioprint instead.jpg

The fight to ban animal testing recently scored a major victory when California became the first US state to pass a bill that would ban testing cosmetics on animals.

Companies conduct animal tests to determine the safety of new formulas used in cosmetic products. These tests include skin and eye irritation tests to study allergic reactions and “lethal-dose” testing to determine ingredient toxicity.

But these tests have scientific limitations because humans and animals react differently to certain chemicals. Therefore these tests, that are meant to study the safety of cosmetics before they touch human skin, aren’t even relevant.

Here at Allevi, we believe in the future of personalized cosmetic testing. Our 3D bioprinters allow researchers to customize every aspect of their study - including tissue shape, size, geometry and cell line. Imagine a world where drugs and cosmetics are no longer cruelly tested on animals, but tested on patches of human tissue. But not just any human’s tissue but YOURS because you are different from a rabbit and different from a monkey and even different from your fellow human.

We applaud California for following in the EU, Norway, Israel and India’s footsteps. It’s time we replace these outdated methods; not only because they are cruel to animals but because they are ineffective. Allevi is here to usher in a new era for a cruelty free and scientifically relevant future.

Allevi Author: Plant Based Hydrogels for Cell Laden Bioprinting

plant based hydrogels allevi bioprint.jpg

Time for another inductee to the #AlleviAuthor club. Researchers from University of California, Berkeley and IBM used their Allevi 2 bioprinter to study the printability and viability of plant based bioinks.

In their paper titled, “Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering” and published in ACS Biomaterials Science & Engineering, they compared agarose-based hydrogels commonly used for cartilage tissue engineering to Pluronic. The goal is to find a bioink that has great printability without sacrificing cell viability.

The team compared mechanical and rheological properties, including yield stress, storage modulus, and shear thinning, as well as construct shape fidelity to assess their potential as a bioink for cell-based tissue engineering. Read on to find out which ratios of alginate and agarose demonstrated the best cell viability as well as print structure for their cartilage tissue engineering needs: https://cdn-pubs.acs.org/doi/10.1021/acsbiomaterials.8b00903.

Bioprinting offers hope of new treatment paths for cancer patients

Univ of Waikato 3d bioprinter bioprint allevi .jpg

Our amazing users at The University of Waikato will use their Allevi 2 to research new treatment paths for cancer patients that could eventually lead to cancer tumors being treated outside patients' bodies.

We are constantly inspired by this amazing community of scientists who are changing the way we design, heal and build with life. And we're here to support them along the way! Read on to learn more about this incredible research.